Wavelet based analysis of multi-electrode EEG-signals in epilepsy

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Daniel A. Hein - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Ronald Tetzlaff - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)

Abstract

For many epilepsy patients seizures cannot sufficiently be controlled by an antiepileptic pharmacatherapy. Furthermore, only in small number of cases a surgical treatment may be possible. The aim of this work is to contribute to the realization of an implantable seizure warning device. By using recordings of electroenzephalographical(EEG) signals obtained from the department of epileptology of the University of Bonn we studied a recently proposed algorithm for the detection of parameter changes in nonlinear systems. Firstly, after calculating the crosscorrelation function between the signals of two electrodes near the epileptic focus, a wavelet-analysis follows using a sliding window with the so called Mexican-Hat wavelet. Then the Shannon-Entropy of the wavelet-transformed data has been determined providing the information content on a time scale in subject to the dilation of the wavelet-transformation. It shows distinct changes at the seizure onset for all dilations and for all patients.

Details

OriginalspracheEnglisch
Aufsatznummer08
Seiten (von - bis)66-74
Seitenumfang9
Fachzeitschrift Proceedings of SPIE - The International Society for Optical Engineering
Jahrgang5839
PublikationsstatusVeröffentlicht - 2005
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

TitelBioengineered and Bioinspired Systems II
Dauer9 - 11 Mai 2005
StadtSeville
LandSpanien

Externe IDs

ORCID /0000-0001-7436-0103/work/173513965

Schlagworte

Schlagwörter

  • EEG, Epilepsy, Multi-Electrode, Seizure-Detection, Wavelet Analysis