Wafer-scale nanofabrication of telecom single-photon emitters in silicon

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Michael Hollenbach - , Professur für Spektroskopie in der Halbleiterphysik (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Nico Klingner - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Nagesh S. Jagtap - , Professur für Spektroskopie in der Halbleiterphysik (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Lothar Bischoff - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Ciarán Fowley - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Ulrich Kentsch - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Gregor Hlawacek - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Artur Erbe - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Nikolay V. Abrosimov - , Leibniz-Institut für Kristallzüchtung (Autor:in)
  • Manfred Helm - , Professur für Spektroskopie in der Halbleiterphysik (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Yonder Berencén - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Georgy V. Astakhov - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)

Abstract

A highly promising route to scale millions of qubits is to use quantum photonic integrated circuits (PICs), where deterministic photon sources, reconfigurable optical elements, and single-photon detectors are monolithically integrated on the same silicon chip. The isolation of single-photon emitters, such as the G centers and W centers, in the optical telecommunication O-band, has recently been realized in silicon. In all previous cases, however, single-photon emitters were created uncontrollably in random locations, preventing their scalability. Here, we report the controllable fabrication of single G and W centers in silicon wafers using focused ion beams (FIB) with high probability. We also implement a scalable, broad-beam implantation protocol compatible with the complementary-metal-oxide-semiconductor (CMOS) technology to fabricate single telecom emitters at desired positions on the nanoscale. Our findings unlock a clear and easily exploitable pathway for industrial-scale photonic quantum processors with technology nodes below 100 nm.

Details

OriginalspracheEnglisch
Aufsatznummer7683
FachzeitschriftNature communications
Jahrgang13
Ausgabenummer1
PublikationsstatusVeröffentlicht - 12 Dez. 2022
Peer-Review-StatusJa

Externe IDs

PubMed 36509736