Using Performance Analysis Tools for a Parallel-in-Time Integrator: Does My Time-Parallel Code Do What I Think It Does?

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

While many ideas and proofs of concept for parallel-in-time integration methods exists, the number of large-scale, accessible time-parallel codes is rather small. This is often due to the apparent or subtle complexity of the algorithms and the many pitfalls awaiting developers of parallel numerical software. One example of such a time-parallel code is pySDC, which implements, among others, the parallel full approximation scheme in space and time (PFASST). Inspired by nonlinear multigrid ideas, PFASST allows to integrate multiple time steps simultaneously using a space-time hierarchy of spectral deferred corrections. In this paper, we demonstrate the application of performance analysis tools to the PFASST implementation pySDC. We trace the path we took for this work, show examples of how the tools can be applied, and explain the sometimes surprising findings we encountered. Although focusing only on a single implementation of a particular parallel-in-time integrator, we hope that our results and in particular the way we obtained them are a blueprint for other time-parallel codes.

Details

OriginalspracheEnglisch
TitelParallel-in-Time Integration Methods
Redakteure/-innenBenjamin Ong, Jacob Schroder, Jemma Shipton, Stephanie Friedhoff
Seiten51-80
Seitenumfang30
ISBN (elektronisch)978-3-030-75933-9
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa

Publikationsreihe

ReiheSpringer proceedings in mathematics and statistics
Band356
ISSN2194-1009

Externe IDs

Scopus 85115138155
Mendeley 051de21c-ae8c-34e0-9f57-ee3c04fc5c12

Schlagworte

ASJC Scopus Sachgebiete