Upper functions for sample paths of Lévy(-type) processes
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study the small-time asymptotics of sample paths of Lévy processes and Lévy-type processes. Namely, we investigate under which conditions the limit [formula presented] is finite resp. infinite with probability 1. We establish integral criteria in terms of the infinitesimal characteristics and the symbol of the process. Our results apply to a wide class of processes, including solutions to Lévy-driven SDEs and stable-like processes. For the particular case of Lévy processes, we recover and extend earlier results from the literature. Moreover, we present a new maximal inequality for Lévy-type processes, which is of independent interest.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2874-2908 |
Seitenumfang | 35 |
Fachzeitschrift | Bernoulli |
Jahrgang | 28 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - Nov. 2022 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Feller process, Lévy process, martingale problem, maximal inequality, sample path behaviour, small-time asymptotics, upper function