Unsupervised Knowledge Adaptation for Passenger Demand Forecasting

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Considering the multimodal nature of transport systems and cross-modal correlations, there is a growing trend of enhancing demand forecasting accuracy by optimization with multiple transport modes data jointly, which can improve accuracy but be less practical when different parts of multimodal datasets are owned by different institutions who cannot directly share dat. This study proposes an Unsupervised Knowledge Adaptation Demand Forecasting framework, which forecasts the demand of one mode (i.e., the target mode) by utilizing a pretrained model based on data of another mode, but does not require direct data sharing of another transport mode (i.e., the source mode). The unsupervised knowledge adaptation strategy is utilized to form the sharing features for forecasting by making the pre-trained network and the sharing extraction network analogous. Our findings illustrate that unsupervised knowledge adaptation by sharing pre-trained models to the target transport mode can improve the forecasting performance instead of direct data sharing.

Details

OriginalspracheEnglisch
TitelProceedings of the 26th International Conference of Hong Kong Society for Transportation Studies, HKSTS 2022
Redakteure/-innenSisi Jian, Sen Li, Hong K. Lo
Herausgeber (Verlag)Hong Kong Society for Transportation Studies Limited
Seiten500-508
Seitenumfang9
ISBN (elektronisch)9789881581402
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheInternational Conference of Hong Kong Society for Transportation Studies (HKSTS)

Konferenz

Titel26th International Conference of Hong Kong Society for Transportation Studies, HKSTS 2022
Dauer12 - 13 Dezember 2022
StadtHong Kong
LandHongkong

Externe IDs

ORCID /0000-0002-2939-2090/work/161887591

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Demand Forecasting, Knowledge Adaptation, Unsupervised Learning