Unstable manifolds for fractional differential equations
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)); u(0) = u0; on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 58-72 |
| Seitenumfang | 15 |
| Fachzeitschrift | Eurasian journal of mathematical and computer applications : EJMCA |
| Jahrgang | 10 |
| Ausgabenummer | 3 |
| Publikationsstatus | Veröffentlicht - 2022 |
| Peer-Review-Status | Ja |
Externe IDs
| ORCID | /0000-0003-0967-6747/work/172084901 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Abstract differential equations, Analytic c -semigroups, Banach spaces, Compact convergence of resolvents, Discretization in space, Fractional differential equations, Fractional powers of operators, Hyperbolic equilibrium point, Parabolic problem, Semidiscretization, Unstable manifolds