Unraveling dispersion and buoyancy dynamics around radial A + B → C reaction fronts: microgravity experiments and numerical simulations

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Yorgos Stergiou - , Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden (Autor:in)
  • Darío M. Escala - , Université libre de Bruxelles (ULB) (Autor:in)
  • Paszkál Papp - , University of Szeged (Autor:in)
  • Dezső Horváth - , University of Szeged (Autor:in)
  • Marcus J.B. Hauser - , Otto-von-Guericke-Universität Magdeburg (Autor:in)
  • Fabian Brau - , Université libre de Bruxelles (ULB) (Autor:in)
  • Anne De Wit - , Université libre de Bruxelles (ULB) (Autor:in)
  • Ágota Tóth - , University of Szeged (Autor:in)
  • Kerstin Eckert - , Professur für Transportprozesse an Grenzflächen (g.B. HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Karin Schwarzenberger - , Professur für Transportprozesse an Grenzflächen (g.B. HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)

Abstract

Radial Reaction–Diffusion–Advection (RDA) fronts for A + B → C reactions find wide applications in many natural and technological processes. In liquid solutions, their dynamics can be perturbed by buoyancy-driven convection due to concentration gradients across the front. In this context, we conducted microgravity experiments aboard a sounding rocket, in order to disentangle dispersion and buoyancy effects in such fronts. We studied experimentally the dynamics due to the radial injection of A in B at a constant flow rate, in absence of gravity. We compared the obtained results with numerical simulations using either radial one– (1D) or two–dimensional (2D) models. We showed that gravitational acceleration significantly distorts the RDA dynamics on ground, even if the vertical dimension of the reactor and density gradients are small. We further quantified the importance of such buoyant phenomena. Finally, we showed that 1D numerical models with radial symmetry fail to predict the dynamics of RDA fronts in thicker geometries, while 2D radial models are necessary to accurately describe RDA dynamics where Taylor–Aris dispersion is significant.

Details

OriginalspracheEnglisch
Aufsatznummer53
Seitenumfang9
Fachzeitschriftnpj Microgravity
Jahrgang10 (2024)
Ausgabenummer1
PublikationsstatusVeröffentlicht - 9 Mai 2024
Peer-Review-StatusJa