Uniqueness of integrable solutions to ∇ ζ=G ζ, ζǀGamma = 0 for integrable tensor coefficients G and applications to elasticity
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Let Ω ⊂ ℝN be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ∂Ω. We show that the solution to the linear first-order system (Formula is Presented) is unique if (Formula is Presented) and (Formula is Presented). As a consequence, we prove (Formula is Presented) to be a norm for (Formula is Presented) for some p, q > 1 with 1/p + 1/q = 1 as well as det (Formula is Presented). We also give a new and different proof for the so-called 'infinitesimal rigid displacement lemma' in curvilinear coordinates: Let (Formula is Presented) satisfy sym (Formula is Presented) for some (Formula is Presented). Then, there exist a constant translation vector (Formula is Presented).
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 1679-1688 |
| Seitenumfang | 10 |
| Fachzeitschrift | Zeitschrift fur Angewandte Mathematik und Physik |
| Jahrgang | 64 |
| Ausgabenummer | 6 |
| Publikationsstatus | Veröffentlicht - Dez. 2013 |
| Peer-Review-Status | Ja |
| Extern publiziert | Ja |
Externe IDs
| ORCID | /0000-0003-4155-7297/work/145224247 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- First-order system of partial differential equations, Generalized Korn's first inequality, Infinitesimal rigid displacement lemma, Korn's inequality, Korn's inequality in curvilinear coordinates, Unique continuation, Uniqueness