Uniformly attracting solutions of nonautonomous differential equations

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • A. Berger - , University of Canterbury (Autor:in)
  • S. Siegmund - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)

Abstract

Understanding the structure of attractors is fundamental in nonautonomous stability and bifurcation theory. By means of clarifying theorems and carefully designed examples we highlight the potential complexity of attractors for nonautonomous differential equations that are as close to autonomous equations as possible. We introduce and study bounded uniform attractors and repellors for nonautonomous scalar differential equations, in particular for asymptotically autonomous, polynomial, and periodic equations. Our results suggest that uniformly attracting or repelling solutions are the true analogues of attracting or repelling fixed points of autonomous systems. We provide sharp conditions for the autonomous structure to break up and give way to a bewildering diversity of nonautonomous bifurcations.

Details

OriginalspracheEnglisch
Seiten (von - bis)3789-3811
Seitenumfang23
FachzeitschriftNonlinear Analysis, Theory, Methods and Applications
Jahrgang68
Ausgabenummer12
PublikationsstatusVeröffentlicht - 15 Juni 2008
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0003-0967-6747/work/172571568

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Asymptotically autonomous, Attractor, Nonautonomous dynamical system, Poincaré map, Polynomial differential equation, Repellor