Uniformly attracting solutions of nonautonomous differential equations
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Understanding the structure of attractors is fundamental in nonautonomous stability and bifurcation theory. By means of clarifying theorems and carefully designed examples we highlight the potential complexity of attractors for nonautonomous differential equations that are as close to autonomous equations as possible. We introduce and study bounded uniform attractors and repellors for nonautonomous scalar differential equations, in particular for asymptotically autonomous, polynomial, and periodic equations. Our results suggest that uniformly attracting or repelling solutions are the true analogues of attracting or repelling fixed points of autonomous systems. We provide sharp conditions for the autonomous structure to break up and give way to a bewildering diversity of nonautonomous bifurcations.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 3789-3811 |
Seitenumfang | 23 |
Fachzeitschrift | Nonlinear Analysis, Theory, Methods and Applications |
Jahrgang | 68 |
Ausgabenummer | 12 |
Publikationsstatus | Veröffentlicht - 15 Juni 2008 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
ORCID | /0000-0003-0967-6747/work/172571568 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Asymptotically autonomous, Attractor, Nonautonomous dynamical system, Poincaré map, Polynomial differential equation, Repellor