Unidirectional motion of topological defects mediating continuous rotation processes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Marisel Di Pietro Martínez - , Max-Planck-Institut für Chemische Physik fester Stoffe, Hiroshima University (Autor:in)
  • Luke Alexander Turnbull - , Max-Planck-Institut für Chemische Physik fester Stoffe, Hiroshima University (Autor:in)
  • Jeffrey Neethirajan - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Max Birch - , RIKEN Center for Emergent Matter Science (Autor:in)
  • Simone Finizio - , Paul Scherrer Institute (PSI) (Autor:in)
  • Jörg Raabe - , Paul Scherrer Institute (PSI) (Autor:in)
  • Edouard Lesne - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Anastasios Markou - , Max-Planck-Institut für Chemische Physik fester Stoffe, University of Ioannina (Autor:in)
  • María Vélez - , University of Oviedo, Center of Research on Nanomaterials and Nanotechnology CINN (Autor:in)
  • Aurelio Hierro-Rodríguez - , University of Oviedo, Center of Research on Nanomaterials and Nanotechnology CINN (Autor:in)
  • Marco Salvalaglio - , Mesoskalige Materialmodellierung und Simulationen (NFoG), Dresden Center for Computational Materials Science (DCMS) (Autor:in)
  • Claire Donnelly - , Max-Planck-Institut für Chemische Physik fester Stoffe, Hiroshima University (Autor:in)

Abstract

Topological defects play a crucial role across various fields, mediating phase transitions and macroscopic behaviors as they propagate through space. Their role as robust information carriers has also generated much attention. However, controlling their motion remains challenging, especially towards achieving motion along well-defined paths, which typically require predefined structural patterning. Here, we demonstrate the tunable, unidirectional motion of topological defects in a laterally unconfined thin film. The motion of these defects—specifically magnetic dislocations—is shown to mediate the overall continuous rotation of the stripe pattern in which they are embedded. We determine the connection between the unidirectional motion of dislocations and the underlying three-dimensional (3D) magnetic structure by performing 3D magnetic vectorial imaging with in situ magnetic fields. A minimal model for dislocations in stripe patterns that encodes the symmetry breaking induced by the external magnetic field reproduces the motion of dislocations that facilitate the 2D rotation of the stripes, highlighting the universality of the phenomenon. This work establishes a framework for studying the field-driven behavior of topological textures and designing materials that enable well-defined, controlled motion of defects in unconfined systems, paving the way to manipulate information carriers in higher-dimensional systems.

Details

OriginalspracheEnglisch
Aufsatznummer47
Fachzeitschriftnpj Spintronics
Jahrgang3
Ausgabenummer1
PublikationsstatusVeröffentlicht - Dez. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-4217-0951/work/199215778