Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Wen Ju - , Technische Universität Berlin (Autor:in)
  • Alexander Bagger - , Universität Kopenhagen (Autor:in)
  • Guang Ping Hao - , Professur für Anorganische Chemie (I) (AC1), Technische Universität Berlin (Autor:in)
  • Ana Sofia Varela - , Technische Universität Berlin, Universidad Nacional Autónoma de México (Autor:in)
  • Ilya Sinev - , Ruhr-Universität Bochum (Autor:in)
  • Volodymyr Bon - , Professur für Anorganische Chemie (I) (AC1) (Autor:in)
  • Beatriz Roldan Cuenya - , Ruhr-Universität Bochum, Fritz Haber Institute of the Max Planck Society (Autor:in)
  • Stefan Kaskel - , Professur für Anorganische Chemie (I) (AC1) (Autor:in)
  • Jan Rossmeisl - , Technische Universität Berlin, Universität Kopenhagen (Autor:in)
  • Peter Strasser - , Technische Universität Berlin (Autor:in)

Abstract

Direct electrochemical reduction of CO2 to fuels and chemicals using renewable electricity has attracted significant attention partly due to the fundamental challenges related to reactivity and selectivity, and partly due to its importance for industrial CO2-consuming gas diffusion cathodes. Here, we present advances in the understanding of trends in the CO2 to CO electrocatalysis of metal- and nitrogen-doped porous carbons containing catalytically active M-N x moieties (M = Mn, Fe, Co, Ni, Cu). We investigate their intrinsic catalytic reactivity, CO turnover frequencies, CO faradaic efficiencies and demonstrate that Fe-N-C and especially Ni-N-C catalysts rival Au- and Ag-based catalysts. We model the catalytically active M-N x moieties using density functional theory and correlate the theoretical binding energies with the experiments to give reactivity-selectivity descriptors. This gives an atomic-scale mechanistic understanding of potential-dependent CO and hydrocarbon selectivity from the M-N x moieties and it provides predictive guidelines for the rational design of selective carbon-based CO2 reduction catalysts.

Details

OriginalspracheEnglisch
Aufsatznummer944
FachzeitschriftNature communications
Jahrgang8
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Dez. 2017
Peer-Review-StatusJa

Externe IDs

PubMed 29038491