Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Martin Rehwald - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Stefan Assenbaum - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Constantin Bernert - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Florian Emanuel Brack - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Michael Bussmann - , Helmholtz-Zentrum Dresden-Rossendorf, Center for Advanced Systems Understanding (CASUS) (Autor:in)
  • Thomas E. Cowan - , Professur für Strahlenphysik (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Chandra B. Curry - , Stanford Linear Accelerator Center (SLAC), University of Alberta (Autor:in)
  • Frederico Fiuza - , Stanford Linear Accelerator Center (SLAC) (Autor:in)
  • Marco Garten - , Helmholtz-Zentrum Dresden-Rossendorf, Lawrence Berkeley National Laboratory (Autor:in)
  • Lennart Gaus - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Maxence Gauthier - , Stanford Linear Accelerator Center (SLAC) (Autor:in)
  • Sebastian Göde - , European XFEL (Autor:in)
  • Ilja Göthel - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Siegfried H. Glenzer - , Stanford Linear Accelerator Center (SLAC) (Autor:in)
  • Lingen Huang - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Axel Huebl - , Helmholtz-Zentrum Dresden-Rossendorf, Lawrence Berkeley National Laboratory (Autor:in)
  • Jongjin B. Kim - , Stanford Linear Accelerator Center (SLAC) (Autor:in)
  • Thomas Kluge - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Stephan Kraft - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Florian Kroll - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Josefine Metzkes-Ng - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Thomas Miethlinger - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Markus Loeser - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Lieselotte Obst-Huebl - , Helmholtz-Zentrum Dresden-Rossendorf, Lawrence Berkeley National Laboratory (Autor:in)
  • Marvin Reimold - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Hans Peter Schlenvoigt - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Christopher Schoenwaelder - , Stanford Linear Accelerator Center (SLAC), Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Ulrich Schramm - , Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden (Autor:in)
  • Mathias Siebold - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Franziska Treffert - , Stanford Linear Accelerator Center (SLAC), Technische Universität Darmstadt (Autor:in)
  • Long Yang - , Professur für Strahlenphysik (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Tim Ziegler - , Professur für Strahlenphysik (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Karl Zeil - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)

Abstract

Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.

Details

OriginalspracheEnglisch
Aufsatznummer4009
FachzeitschriftNature communications
Jahrgang14
Ausgabenummer1
PublikationsstatusVeröffentlicht - Dez. 2023
Peer-Review-StatusJa

Externe IDs

PubMed 37419912