U(1)-symmetric Gaussian fermionic projected entangled paired states and their Gutzwiller projection

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We develop a formalism for constructing particle-number-conserving Gaussian fermionic projected entangled pair states [U(1)-GfPEPS] and show that these states can describe ground states of band insulators and gapless fermions with band touching points. When using them as variational Ans\"{a}tze for two Dirac fermion systems ($\pi$-flux model on the square lattice and $[0,\pi]$-flux model on the kagome lattice), we find that the U(1)-GfPEPS, even with a relatively small bond dimension, can accurately approximate the Dirac Fermi sea ground states. By applying Gutzwiller projectors on top of these U(1)-GfPEPS, we obtain PEPS representation of U(1)-Dirac spin liquid states for spin-1/2 systems. With state-of-the-art tensor network numerics, the critical exponent in the spin-spin correlation function of the Gutzwiller-projected $\pi$-flux state is estimated to be $\eta \approx 1.7$.

Details

OriginalspracheEnglisch
Aufsatznummer085148
FachzeitschriftPhysical Review B
Jahrgang107
Ausgabenummer8
PublikationsstatusVeröffentlicht - 27 Feb. 2023
Peer-Review-StatusJa

Externe IDs

Mendeley 70a09d4b-e1d7-3f60-99a6-c24c2ff7b2ad
Scopus 85149674384
WOS 000944302400001

Schlagworte

Schlagwörter

  • Matrix renormalization-group, Optimization, Geometry, Chain

Bibliotheksschlagworte