U(1)-symmetric Gaussian fermionic projected entangled paired states and their Gutzwiller projection
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We develop a formalism for constructing particle-number-conserving Gaussian fermionic projected entangled pair states [U(1)-GfPEPS] and show that these states can describe ground states of band insulators and gapless fermions with band touching points. When using them as variational Ans\"{a}tze for two Dirac fermion systems ($\pi$-flux model on the square lattice and $[0,\pi]$-flux model on the kagome lattice), we find that the U(1)-GfPEPS, even with a relatively small bond dimension, can accurately approximate the Dirac Fermi sea ground states. By applying Gutzwiller projectors on top of these U(1)-GfPEPS, we obtain PEPS representation of U(1)-Dirac spin liquid states for spin-1/2 systems. With state-of-the-art tensor network numerics, the critical exponent in the spin-spin correlation function of the Gutzwiller-projected $\pi$-flux state is estimated to be $\eta \approx 1.7$.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 085148 |
Fachzeitschrift | Physical Review B |
Jahrgang | 107 |
Ausgabenummer | 8 |
Publikationsstatus | Veröffentlicht - 27 Feb. 2023 |
Peer-Review-Status | Ja |
Externe IDs
Mendeley | 70a09d4b-e1d7-3f60-99a6-c24c2ff7b2ad |
---|---|
Scopus | 85149674384 |
WOS | 000944302400001 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Matrix renormalization-group, Optimization, Geometry, Chain