Two-Stage Learning Based Fuzzy Cognitive Maps Reduction Approach

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Miklos Ferenc Hatwagner - , Széchenyi István University (Autor:in)
  • Engin Yesil - , Technische Universität Dresden, Getron Corp (Autor:in)
  • M. Furkan Dodurka - , Technische Universität Dresden, Getron Corp (Autor:in)
  • Elpiniki Papageorgiou - , Technological Educational Institute (TEI) of Central Greece (Autor:in)
  • Leon Urbas - , Professur für Prozessleittechnik (Autor:in)
  • Laszlo T. Koczy - , Technische und Wirtschaftswissenschaftliche Universität Budapest (Autor:in)

Abstract

In this study, a new two-stage learning based reduction approach for fuzzy cognitive maps (FCM) is introduced in order to reduce the number of concepts. FCM is a graphical modeling technique that follows a reasoning approach similar to the human reasoning and the decision-making process. The FCM model incorporates the available knowledge and expertise in the form of concepts and in the direction and strength of the interactions among concepts. One of the modeling problems of FCMs is that oversized FCM models suffer from interpretability problems. An oversized FCM may contain concepts that are semantically similar and affect the other concepts in a similar way. This new study introduces a two-stage model reduction approach, and both static and dynamic analyses are considered without losing essential information. In the first stage, the number of concepts is reduced by merging similar concepts into clusters, whereas in the second stage the transformation function parameters of concepts are optimized. In order to show the benefit of using the proposed reduction approach, two sets of studies are conducted. First, a huge set of synthetic FCMs are generated, and the results of these statistical analyses are presented via various tables and figures. Subsequently, suggestions to the decision makers are given. Second, experimental studies are also presented to show the decision parameters and procedure for the proposed approach. The results show that after using the concept reduction approach presented in this study, the interpretability of FCM increases with an acceptable amount of information loss in the output concepts.

Details

OriginalspracheEnglisch
Aufsatznummer8259309
Seiten (von - bis)2938-2952
Seitenumfang15
FachzeitschriftIEEE Transactions on Fuzzy Systems
Jahrgang26
Ausgabenummer5
PublikationsstatusVeröffentlicht - Okt. 2018
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-5165-4459/work/174432565

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • Big Bang-Big Crunch (BB-BC) optimization, clustering, concept reduction, fuzzy cognitive maps (FCM), unsupervised and supervised reduction