Two-element structures modulo primitive positive constructability

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

Primitive positive constructions have been introduced in recent work of Barto, Opršal, and Pinsker to study the computational complexity of constraint satisfaction problems. Let Pfin be the poset which arises from ordering all finite relational structures by pp-constructability. This poset is infinite, but we do not know whether it is uncountable. In this article, we give a complete description of the restriction PBoole of Pfin to relational structures on a two-element set. We use PBoole to present the various complexity regimes of Boolean constraint satisfaction problems that were described by Allender, Bauland, Immerman, Schnoor and Vollmer.

Details

OriginalspracheEnglisch
Aufsatznummer20
FachzeitschriftAlgebra universalis
Jahrgang81
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Mai 2020
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8228-3611/work/142241064

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Boolean structures, Clones, Complexity of Boolean constraint satisfaction problems, Height-one identity, Linear Maltsev condition, Minor-preserving maps, Primitive positive construction