Two results on the Convex Algebraic Geometry of sets with continuous symmetries

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We prove two results on convex subsets of Euclidean spaces invariant under an orthogonal group action. First, we show that invariant spectrahedra admit an equivariant spectrahedral description, that is, can be described by an equivariant linear matrix inequality. Second, we show that the bijection induced by Kostant's Convexity Theorem between convex subsets invariant under a polar representation and convex subsets of a section invariant under the Weyl group preserves the classes of convex semialgebraic sets, spectrahedral shadows, and rigidly convex sets.

Details

OriginalspracheEnglisch
Seiten (von - bis)1388-1408
Seitenumfang21
FachzeitschriftBulletin of the London Mathematical Society
Jahrgang57
Ausgabenummer5
PublikationsstatusVeröffentlicht - Mai 2025
Peer-Review-StatusJa

Externe IDs

Scopus 86000222824

Schlagworte

DFG-Fachsystematik nach Fachkollegium