Transformer-Encoder and Decoder Models for Questions on Math

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

This work summarizes our submission to ARQMath-3. We pre-trained Transformer-Encoder-based Language Models for the task of mathematical answer retrieval and employed a Transformer-Decoder Model for the generation of answers given a question from a mathematical domain. In comparison to our submission to ARQmath-2, we could improve the performance of our models regarding all three metrics nDGC’, mAP’ and p’@10 by refined pre-training and enlarged fine-tuning data. In addition, we improved our p’@10 results even further by additionally fine-tuning on annotated test data from ARQMath-2. In summary, our findings confirm that Transformer-based models benefit from domain adaptive pre-training in the mathematical domain.

Details

OriginalspracheEnglisch
TitelCLEF 2022 Working Notes
Redakteure/-innenGuglielmo Faggioli, Nicola Ferro, Allan Hanbury, Martin Potthast
Seiten119-137
Seitenumfang19
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheCEUR Workshop Proceedings
Band3180
ISSN1613-0073

Konferenz

Titel13th Conference and Labs of the Evaluation Forum
UntertitelInformation Access Evaluation meets Multilinguality, Multimodality, and Visualization
KurztitelCLEF 2022
Veranstaltungsnummer13
Dauer5 - 8 September 2022
Webseite
OrtUniversità di Bologna
StadtBologna
LandItalien

Externe IDs

ORCID /0000-0001-8107-2775/work/194824074

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Information Retrieval, Mathematical Language Processing, Transformer-based Models