Transformer-Encoder and Decoder Models for Questions on Math
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
This work summarizes our submission to ARQMath-3. We pre-trained Transformer-Encoder-based Language Models for the task of mathematical answer retrieval and employed a Transformer-Decoder Model for the generation of answers given a question from a mathematical domain. In comparison to our submission to ARQmath-2, we could improve the performance of our models regarding all three metrics nDGC’, mAP’ and p’@10 by refined pre-training and enlarged fine-tuning data. In addition, we improved our p’@10 results even further by additionally fine-tuning on annotated test data from ARQMath-2. In summary, our findings confirm that Transformer-based models benefit from domain adaptive pre-training in the mathematical domain.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | CLEF 2022 Working Notes |
| Redakteure/-innen | Guglielmo Faggioli, Nicola Ferro, Allan Hanbury, Martin Potthast |
| Seiten | 119-137 |
| Seitenumfang | 19 |
| Publikationsstatus | Veröffentlicht - 2022 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | CEUR Workshop Proceedings |
|---|---|
| Band | 3180 |
| ISSN | 1613-0073 |
Konferenz
| Titel | 13th Conference and Labs of the Evaluation Forum |
|---|---|
| Untertitel | Information Access Evaluation meets Multilinguality, Multimodality, and Visualization |
| Kurztitel | CLEF 2022 |
| Veranstaltungsnummer | 13 |
| Dauer | 5 - 8 September 2022 |
| Webseite | |
| Ort | Università di Bologna |
| Stadt | Bologna |
| Land | Italien |
Externe IDs
| ORCID | /0000-0001-8107-2775/work/194824074 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Information Retrieval, Mathematical Language Processing, Transformer-based Models