Trading Memory versus Workload Overhead in Graph Pattern Matching on Multiprocessor Systems

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Graph pattern matching (GPM) is a core primitive in graph analysis with many applications. Efficient processing of GPM on modern NUMA systems poses several challenges, such as an intelligent storage of the graph itself or keeping track of vertex locality information. During query processing, intermediate results need to be communicated, but target partitions are not always directly identifiable, which requires all workers to scan for requested vertices. To optimize this performance bottleneck, we introduce a Bloom filter based workload reduction approach and discuss the benefits and drawbacks of different implementations. Furthermore, we show the trade-offs between invested memory and performance gain, compared to fully redundant storage.

Details

OriginalspracheEnglisch
TitelDATA 2019 - Proceedings of the 8th International Conference on Data Science, Technology and Applications
Redakteure/-innenSlimane Hammoudi, Christoph Quix, Jorge Bernardino
Herausgeber (Verlag)SCITEPRESS - Science and Technology Publications
Seiten400-407
Seitenumfang8
ISBN (elektronisch)9789897583773
PublikationsstatusVeröffentlicht - 2019
Peer-Review-StatusJa

Konferenz

Titel8th International Conference on Data Science, Technology and Applications, DATA 2019
Dauer26 - 28 Juli 2019
StadtPrague
LandTschechische Republik

Externe IDs

dblp conf/data/KrauseEHL19
ORCID /0000-0001-8107-2775/work/142253492

Schlagworte

Schlagwörter

  • Bloom Filter, Graph Processing, In-memory, Multiprocessor System, NUMA