Trading Memory versus Workload Overhead in Graph Pattern Matching on Multiprocessor Systems
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Graph pattern matching (GPM) is a core primitive in graph analysis with many applications. Efficient processing of GPM on modern NUMA systems poses several challenges, such as an intelligent storage of the graph itself or keeping track of vertex locality information. During query processing, intermediate results need to be communicated, but target partitions are not always directly identifiable, which requires all workers to scan for requested vertices. To optimize this performance bottleneck, we introduce a Bloom filter based workload reduction approach and discuss the benefits and drawbacks of different implementations. Furthermore, we show the trade-offs between invested memory and performance gain, compared to fully redundant storage.
Details
Originalsprache | Englisch |
---|---|
Titel | DATA 2019 - Proceedings of the 8th International Conference on Data Science, Technology and Applications |
Redakteure/-innen | Slimane Hammoudi, Christoph Quix, Jorge Bernardino |
Herausgeber (Verlag) | SCITEPRESS - Science and Technology Publications |
Seiten | 400-407 |
Seitenumfang | 8 |
ISBN (elektronisch) | 9789897583773 |
Publikationsstatus | Veröffentlicht - 2019 |
Peer-Review-Status | Ja |
Konferenz
Titel | 8th International Conference on Data Science, Technology and Applications, DATA 2019 |
---|---|
Dauer | 26 - 28 Juli 2019 |
Stadt | Prague |
Land | Tschechische Republik |
Externe IDs
dblp | conf/data/KrauseEHL19 |
---|---|
ORCID | /0000-0001-8107-2775/work/142253492 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Bloom Filter, Graph Processing, In-memory, Multiprocessor System, NUMA