Traces for Hilbert complexes
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study a new notion of trace operators and trace spaces for abstract Hilbert complexes. We introduce trace spaces as quotient spaces/annihilators. We characterize the kernels and images of the related trace operators and discuss duality relationships between trace spaces. We elaborate that many properties of the classical boundary traces associated with the Euclidean de Rham complex on bounded Lipschitz domains are rooted in the general structure of Hilbert complexes. We arrive at abstract trace Hilbert complexes that can be formulated using quotient spaces/annihilators. We show that, if a Hilbert complex admits stable “regular decompositions” with compact lifting operators, then the associated trace Hilbert complex is Fredholm. Incarnations of abstract concepts and results in the concrete case of the de Rham complex in three-dimensional Euclidean space will be discussed throughout.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 109905 |
Seitenumfang | 50 |
Fachzeitschrift | Journal of functional analysis |
Jahrgang | 284 |
Ausgabenummer | 10 |
Frühes Online-Datum | März 2023 |
Publikationsstatus | Veröffentlicht - 15 Mai 2023 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-4155-7297/work/145224230 |
---|---|
WOS | 000951653300001 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Hilbert complex, Regular decomposition, Surface operator, Trace operator