Traces for Hilbert complexes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We study a new notion of trace operators and trace spaces for abstract Hilbert complexes. We introduce trace spaces as quotient spaces/annihilators. We characterize the kernels and images of the related trace operators and discuss duality relationships between trace spaces. We elaborate that many properties of the classical boundary traces associated with the Euclidean de Rham complex on bounded Lipschitz domains are rooted in the general structure of Hilbert complexes. We arrive at abstract trace Hilbert complexes that can be formulated using quotient spaces/annihilators. We show that, if a Hilbert complex admits stable “regular decompositions” with compact lifting operators, then the associated trace Hilbert complex is Fredholm. Incarnations of abstract concepts and results in the concrete case of the de Rham complex in three-dimensional Euclidean space will be discussed throughout.

Details

OriginalspracheEnglisch
Aufsatznummer109905
Seitenumfang50
FachzeitschriftJournal of functional analysis
Jahrgang284
Ausgabenummer10
Frühes Online-DatumMärz 2023
PublikationsstatusVeröffentlicht - 15 Mai 2023
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4155-7297/work/145224230
WOS 000951653300001

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Hilbert complex, Regular decomposition, Surface operator, Trace operator