TQHD: Thermometer Encoding Based Quantization for Hyperdimensional Computing

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Hyperdimensional computing (HDC) is an emerging brain-inspired machine learning framework built upon unique properties of high-dimensional vectors. The vectors can contain floating-point (FP) or binary values, offering tradeoffs in terms of accuracy and computational cost. Previous works have proposed quantization methods to convert FP models into binary ones to improve performance. Unfortunately, these approaches not only incur an accuracy loss but also sacrifice valuable properties of HDC, such as low training time or robustness to noise. To overcome these limitations, we propose TQHD, a quantization method that transforms FP vectors into thermometer-encoded binary vectors. TQHD reduces the accuracy loss inflicted by quantization by 3.4 pp in complex scenarios compared to the state-of-the-art.

Details

OriginalspracheEnglisch
TitelIEEE Computer Society Annual Symposium on VLSI, ISVLSI 2025 - Conference Proceedings
Herausgeber (Verlag)IEEE Computer Society
ISBN (elektronisch)979-8-3315-3477-6
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Computer Society Annual Symposium on VLSI
ISSN2159-3477

Konferenz

Titel2025 IEEE Computer Society Annual Symposium on VLSI
KurztitelISVLSI 2025
Veranstaltungsnummer28
Dauer6 - 9 Juli 2025
Webseite
OrtElite City Resort
StadtKalamata
LandGriechenland

Externe IDs

ORCID /0000-0002-5007-445X/work/193174421

Schlagworte

Schlagwörter

  • Brain-inspired computing, hyperdimensional computing (HDC), quantization