TQHD: Thermometer Encoding Based Quantization for Hyperdimensional Computing
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Hyperdimensional computing (HDC) is an emerging brain-inspired machine learning framework built upon unique properties of high-dimensional vectors. The vectors can contain floating-point (FP) or binary values, offering tradeoffs in terms of accuracy and computational cost. Previous works have proposed quantization methods to convert FP models into binary ones to improve performance. Unfortunately, these approaches not only incur an accuracy loss but also sacrifice valuable properties of HDC, such as low training time or robustness to noise. To overcome these limitations, we propose TQHD, a quantization method that transforms FP vectors into thermometer-encoded binary vectors. TQHD reduces the accuracy loss inflicted by quantization by 3.4 pp in complex scenarios compared to the state-of-the-art.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2025 - Conference Proceedings |
| Herausgeber (Verlag) | IEEE Computer Society |
| ISBN (elektronisch) | 979-8-3315-3477-6 |
| Publikationsstatus | Veröffentlicht - 2025 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | IEEE Computer Society Annual Symposium on VLSI |
|---|---|
| ISSN | 2159-3477 |
Konferenz
| Titel | 2025 IEEE Computer Society Annual Symposium on VLSI |
|---|---|
| Kurztitel | ISVLSI 2025 |
| Veranstaltungsnummer | 28 |
| Dauer | 6 - 9 Juli 2025 |
| Webseite | |
| Ort | Elite City Resort |
| Stadt | Kalamata |
| Land | Griechenland |
Externe IDs
| ORCID | /0000-0002-5007-445X/work/193174421 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Brain-inspired computing, hyperdimensional computing (HDC), quantization