Towards predictive behavior analysis for smart environments

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Agnes Koschmider - , Karlsruher Institut für Technologie (Autor:in)
  • Stefanie Speidel - , Karlsruher Institut für Technologie (Autor:in)

Abstract

Predictive behavior analysis allows prediction of the (human) behavior based on the analysis of historical data. Efficient approaches for predictive behavior analysis are available for scenarios with structured processes (e.g., based on ERP systems). The prediction of behavior becomes an obstacle when unstructured (decision making) processes underlie the scenario. Scenarios with unstructured processes can be found in smart environments logging sensor (event) streams such as e.g., Smart Home or Connected Cars. No efficient solutions exist to identify abnormal behavior (anomalies) in such smart environments. To provide a solution for anomaly detection in unstructured processes we suggest crossing process engineering with deep learning. Methods from process engineering allow identifying deviations while deep learning improves the robustness of anomalie detection and prediction. This conjunction is a promising approach in order to find an efficient solution.

Details

OriginalspracheEnglisch
Titel7th International Workshop on Enterprise Modeling and Information Systems Architectures: Professional Group Meeting of the GI Special Interest Group on Development Methods for Information Systems and their Application, EMISA 2016
Seiten79-82
Seitenumfang4
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheCEUR Workshop Proceedings
Band1701
ISSN1613-0073

Konferenz

Titel7th International Workshop on Enterprise Modeling and Information Systems Architectures: Fachgruppentreffen der GI-Fachgruppe Entwicklungsmethoden fur Informationssysteme und deren Anwendung, EMISA 2016 - 7th International Workshop on Enterprise Modeling and Information Systems Architectures: Professional Group Meeting of the GI Special Interest Group on Development Methods for Information Systems and their Application, EMISA 2016
Dauer3 - 4 Oktober 2016
StadtVienna
LandÖsterreich

Externe IDs

ORCID /0000-0002-4590-1908/work/163294059

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Behavior analysis, Data, Deep learning, Process mining