Towards predicting DNAPL source zone formation to improve plume assessment: Using robust laboratory and numerical experiments to evaluate the relevance of retention curve characteristics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Christian Engelmann - , Fakultät Umweltwissenschaften, Technische Universität Dresden, Helmholtz-Zentrum für Umweltforschung (UFZ), Commonwealth Scientific & Industrial Research Organisation (CSIRO) (Autor:in)
  • Kaveh Sookhak Lari - , Commonwealth Scientific & Industrial Research Organisation (CSIRO), Edith Cowan University (Autor:in)
  • Luisa Schmidt - , Fakultät Umweltwissenschaften, Technische Universität Dresden, Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Charles J. Werth - , University of Texas at Austin (Autor:in)
  • Marc Walther - , Fakultät Umweltwissenschaften, Technische Universität Dresden, Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)

Abstract

We conducted multiple laboratory trials in a robust and repeatable experimental layout to study dense non-aqueous phase liquid (DNAPL) source zone formation. We extended an image processing and analysis framework to derive DNAPL saturation distributions from reflective optical imaging data, with volume balance deviations < 5.07%. We used a multiphase flow model to simulate source zone formation in a Monte Carlo approach, where the parameter space was defined by the variation of retention curve parameters. Integral and geometric measures were used to characterize the source zones and implemented into a multi-criteria objective function. The latter showed good agreement between observation data and simulation results for effective DNAPL saturation values > 0.04, especially for early stages of DNAPL migration. The common hypothesis that parameters defining the DNAPL-water retention curves are constant over time was not confirmed. Once DNAPL pooling started, the optimal fit in the parameter space was significantly different compared to the earlier DNAPL migration stages. We suspect more complex processes (e.g., capillary hysteresis, adsorption) to become relevant during pool formation. Our results reveal deficits in the grayscale-DNAPL saturation relationship definition and laboratory estimation of DNAPL-water retention curve parameters to overcome current limitations to describe DNAPL source zone formation.

Details

OriginalspracheEnglisch
Aufsatznummer124741
FachzeitschriftJournal of hazardous materials
Jahrgang407
PublikationsstatusVeröffentlicht - 5 Apr. 2021
Peer-Review-StatusJa

Externe IDs

PubMed 33352423
ORCID /0000-0002-1400-274X/work/115820433

Schlagworte

Schlagwörter

  • DNAPL, Laboratory release experiment, Numerical multiphase flow modeling, Reflective optical imaging, Source zone geometry