Towards ion stopping power experiments with the laser-driven LIGHT beamline

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • H. Nazary - , Technische Universität Darmstadt (Autor:in)
  • M. Metternich - , GSI Helmholtzzentrum für Schwerionenforschung (Autor:in)
  • D. Schumacher - , GSI Helmholtzzentrum für Schwerionenforschung (Autor:in)
  • F. Neufeld - , Technische Universität Darmstadt (Autor:in)
  • S. J. Grimm - , Technische Universität Darmstadt (Autor:in)
  • C. Brabetz - , GSI Helmholtzzentrum für Schwerionenforschung (Autor:in)
  • F. Kroll - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden (Autor:in)
  • F. E. Brack - , Fakultät Physik, Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden (Autor:in)
  • A. Blažević - , GSI Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Jena (Autor:in)
  • Ulrich Schramm - , Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden (Autor:in)
  • V. Bagnoud - , Technische Universität Darmstadt, GSI Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Jena (Autor:in)
  • M. Roth - , Technische Universität Darmstadt (Autor:in)

Abstract

The main emphasis of the Laser Ion Generation, Handling and Transport (LIGHT) beamline at GSI Helmholtzzentrum fÜr Schwerionenforschung GmbH are phase-space manipulations of laser-generated ion beams. In recent years, the LIGHT collaboration has successfully generated and focused intense proton bunches with an energy of 8 MeV and a temporal duration shorter than 1 ns (FWHM). An interesting area of application that exploits the short ion bunch properties of LIGHT is the study of ion-stopping power in plasmas, a key process in inertial confinement fusion for understanding energy deposition in dense plasmas. The most challenging regime is found when the projectile velocity closely approaches the thermal plasma electron velocity , for which existing theories show high discrepancies. Since conclusive experimental data are scarce in this regime, we plan to conduct experiments on laser-generated plasma probed with ions generated with LIGHT at a higher temporal resolution than previously achievable. The high temporal resolution is important because the parameters of laser-generated plasmas are changing on the nanosecond time scale. To meet this goal, our recent studies have dealt with ions of lower kinetic energies. In 2021, laser accelerated carbon ions were transported with two solenoids and focused temporally with LIGHT's radio frequency cavity. A bunch length of 1.2 ns (FWHM) at an energy of 0.6 MeV u was achieved. In 2022, protons with an energy of 0.6 MeV were transported and temporally compressed to a bunch length of 0.8 ns. The proton beam was used to measure the energy loss in a cold foil. Both the ion and proton beams will also be employed for energy loss measurements in a plasma target.

Details

OriginalspracheEnglisch
Aufsatznummer302
FachzeitschriftJournal of Plasma Physics
Jahrgang90
Ausgabenummer3
PublikationsstatusVeröffentlicht - 16 Mai 2024
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • intense particle beams, plasma applications