Towards Explaining Epsilon: A Worst-Case Study of Differential Privacy Risks
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Differential privacy is a concept to quantity the disclosure of private information that is controlled by the privacy parameter \varepsilon. However, an intuitive interpretation of \varepsilon is needed to explain the privacy loss to data engineers and data subjects. In this paper, we conduct a worst-case study of differential privacy risks. We generalize an existing model and reduce complexity to provide more understandable statements on the privacy loss. To this end, we analyze the impact of parameters and introduce the notion of a global privacy risk and global privacy leak.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Proceedings - 2021 IEEE European Symposium on Security and Privacy Workshops, Euro S and PW 2021 |
| Seiten | 328-331 |
| Seitenumfang | 4 |
| ISBN (elektronisch) | 9781665410120 |
| Publikationsstatus | Veröffentlicht - Sept. 2021 |
| Peer-Review-Status | Ja |
| Extern publiziert | Ja |
Externe IDs
| Scopus | 85119056273 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- differential privacy, privacy risk, ϵ