Towards Explaining Epsilon: A Worst-Case Study of Differential Privacy Risks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Luise Mehner - (Autor:in)
  • Saskia Nuñez von Voigt - (Autor:in)
  • Florian Tschorsch - , Technische Universität Berlin (Autor:in)

Abstract

Differential privacy is a concept to quantity the disclosure of private information that is controlled by the privacy parameter \varepsilon. However, an intuitive interpretation of \varepsilon is needed to explain the privacy loss to data engineers and data subjects. In this paper, we conduct a worst-case study of differential privacy risks. We generalize an existing model and reduce complexity to provide more understandable statements on the privacy loss. To this end, we analyze the impact of parameters and introduce the notion of a global privacy risk and global privacy leak.

Details

OriginalspracheEnglisch
TitelProceedings - 2021 IEEE European Symposium on Security and Privacy Workshops, Euro S and PW 2021
Seiten328-331
Seitenumfang4
ISBN (elektronisch)9781665410120
PublikationsstatusVeröffentlicht - Sept. 2021
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 85119056273