Towards efficient multi-domain data processing

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Johannes Luong - , Technische Universität Dresden (Autor:in)
  • Dirk Habich - , Technische Universität Dresden (Autor:in)
  • Thomas Kissinger - , Technische Universität Dresden (Autor:in)
  • Wolfgang Lehner - , Technische Universität Dresden (Autor:in)

Abstract

Economy and research increasingly depend on the timely analysis of large datasets to guide decision making. Complex analysis often involve a rich variety of data types and special purpose processing models. We believe, the database system of the future will use compilation techniques to translate specialized and abstract high level programming models into scalable low level operations on efficient physical data formats. We currently envision optimized relational and linear algebra languages, a flexible data flow language(A language inspired by the programming models of popular data flow engines like Apache Spark (spark.apache.org) or Apache Flink (flink.apache.org).) and scaleable physical operators and formats for relational and array data types. In this article, we propose a database system architecture that is designed around these ideas and we introduce our prototypical implementation of that architecture.

Details

OriginalspracheEnglisch
TitelData Management Technologies and Applications - 5th International Conference, DATA 2016, Revised Selected Papers
Redakteure/-innenMarkus Helfert, Chiara Francalanci
Herausgeber (Verlag)Springer Verlag
Seiten47-64
Seitenumfang18
ISBN (Print)9783319629100
PublikationsstatusVeröffentlicht - 2017
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheCommunications in Computer and Information Science
Band737
ISSN1865-0929

Konferenz

Titel5th International Conference on Data Management Technologies and Applications, DATA 2016
Dauer24 - 26 Juli 2016
StadtColmar
LandFrankreich

Externe IDs

ORCID /0000-0001-8107-2775/work/142253524

Schlagworte