Towards efficient multi-domain data processing
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Economy and research increasingly depend on the timely analysis of large datasets to guide decision making. Complex analysis often involve a rich variety of data types and special purpose processing models. We believe, the database system of the future will use compilation techniques to translate specialized and abstract high level programming models into scalable low level operations on efficient physical data formats. We currently envision optimized relational and linear algebra languages, a flexible data flow language(A language inspired by the programming models of popular data flow engines like Apache Spark (spark.apache.org) or Apache Flink (flink.apache.org).) and scaleable physical operators and formats for relational and array data types. In this article, we propose a database system architecture that is designed around these ideas and we introduce our prototypical implementation of that architecture.
Details
Originalsprache | Englisch |
---|---|
Titel | Data Management Technologies and Applications - 5th International Conference, DATA 2016, Revised Selected Papers |
Redakteure/-innen | Markus Helfert, Chiara Francalanci |
Herausgeber (Verlag) | Springer Verlag |
Seiten | 47-64 |
Seitenumfang | 18 |
ISBN (Print) | 9783319629100 |
Publikationsstatus | Veröffentlicht - 2017 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Publikationsreihe
Reihe | Communications in Computer and Information Science |
---|---|
Band | 737 |
ISSN | 1865-0929 |
Konferenz
Titel | 5th International Conference on Data Management Technologies and Applications, DATA 2016 |
---|---|
Dauer | 24 - 26 Juli 2016 |
Stadt | Colmar |
Land | Frankreich |
Externe IDs
ORCID | /0000-0001-8107-2775/work/142253524 |
---|