Towards automated visual monitoring of individual gorillas in the wild

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Clemens Alexander Brust - , Friedrich-Schiller-Universität Jena (Autor:in)
  • Tilo Burghardt - , University of Bristol (Autor:in)
  • Milou Groenenberg - , Wildlife Conservation Society – Congo, Wildlife Conservation Society (WCS) (Autor:in)
  • Christoph Käding - , Friedrich-Schiller-Universität Jena, Michael Stifel Center Jena for Data-driven and Simulation Science (Autor:in)
  • Hjalmar S. Kühl - , Max Planck Institute for Evolutionary Anthropology, Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig (Autor:in)
  • Marie L. Manguette - , Wildlife Conservation Society – Congo, Max Planck Institute for Evolutionary Anthropology (Autor:in)
  • Joachim Denzler - , Friedrich-Schiller-Universität Jena, Michael Stifel Center Jena for Data-driven and Simulation Science, Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig (Autor:in)

Abstract

In this paper we report on the context and evaluation of a system for an automatic interpretation of sightings of individual western lowland gorillas (Gorilla gorilla gorilla) as captured in facial field photography in the wild. This effort aligns with a growing need for effective and integrated monitoring approaches for assessing the status of biodiversity at high spatio-Temporal scales. Manual field photography and the utilisation of autonomous camera traps have already transformed the way ecological surveys are conducted. In principle, many environments can now be monitored continuously, and with a higher spatio-Temporal resolution than ever before. Yet, the manual effort required to process photographic data to derive relevant information delimits any large scale application of this methodology. The described system applies existing computer vision techniques including deep convolutional neural networks to cover the tasks of detection and localisation, as well as individual identification of gorillas in a practically relevant setup. We evaluate the approach on a relatively large and challenging data corpus of 12,765 field images of 147 individual gorillas with image-level labels (i.e. missing bounding boxes) photographed at Mbeli Bai at the Nouabal-Ndoki National Park, Republic of Congo. Results indicate a facial detection rate of 90.8% AP and an individual identification accuracy for ranking within the Top 5 set of 80.3%. We conclude that, whilst keeping the human in the loop is critical, this result is practically relevant as it exemplifies model transferability and has the potential to assist manual identification efforts. We argue further that there is significant need towards integrating computer vision deeper into ecological sampling methodologies and field practice to move the discipline forward and open up new research horizons.

Details

OriginalspracheEnglisch
Titel2017 IEEE International Conference on Computer Vision Workshops (ICCVW)
Seiten2820-2830
Seitenumfang11
ISBN (elektronisch)978-1-5386-1034-3
PublikationsstatusVeröffentlicht - 1 Juli 2017
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

Reihe International Conference on Computer Vision Workshops (ICCV Workshops)
ISSN2473-9944

Konferenz

Titel16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Dauer22 - 29 Oktober 2017
StadtVenice
LandItalien