Towards an FCA-based Recommender System for Black-Box Optimization

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Black-box optimization problems are of practical importance throughout science and engineering. Hundreds of algorithms and heuristics have been developed to solve them. However, none of them outperforms any other on all problems. The success of a particular heuristic is always relative to a class of problems. So far, these problem classes are elusive and it is not known what algorithm to use on a given problem. Here we describe the use of Formal Concept Analysis (FCA) to extract implications about problem classes and algorithm performance from databases of empirical benchmarks. We explain the idea in a small example and show that FCA produces meaningful implications. We further outline the use of attribute exploration to identify problem features that predict algorithm performance.

Details

OriginalspracheEnglisch
TitelFCA4AI 2014 - What can FCA do for Artificial Intelligence?
Redakteure/-innenSergei O. Kuznetsov, Amedeo Napoli, Sebastian Rudolph
Seiten35-42
Seitenumfang8
PublikationsstatusVeröffentlicht - 2014
Peer-Review-StatusJa

Publikationsreihe

ReiheCEUR Workshop Proceedings
Band1257
ISSN1613-0073

Konferenz

Titel3rd International Workshop "What can FCA do for Artificial Intelligence?"
KurztitelFCA4AI 2014
BeschreibungCo-Located with the European Conference on Artificial Intelligence, ECAI 2014
Dauer19 August 2014
StadtPrague
LandTschechische Republik

Externe IDs

ORCID /0000-0003-4414-4340/work/142252137

Schlagworte

ASJC Scopus Sachgebiete