Towards an FCA-based Recommender System for Black-Box Optimization
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Black-box optimization problems are of practical importance throughout science and engineering. Hundreds of algorithms and heuristics have been developed to solve them. However, none of them outperforms any other on all problems. The success of a particular heuristic is always relative to a class of problems. So far, these problem classes are elusive and it is not known what algorithm to use on a given problem. Here we describe the use of Formal Concept Analysis (FCA) to extract implications about problem classes and algorithm performance from databases of empirical benchmarks. We explain the idea in a small example and show that FCA produces meaningful implications. We further outline the use of attribute exploration to identify problem features that predict algorithm performance.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | FCA4AI 2014 - What can FCA do for Artificial Intelligence? |
| Redakteure/-innen | Sergei O. Kuznetsov, Amedeo Napoli, Sebastian Rudolph |
| Seiten | 35-42 |
| Seitenumfang | 8 |
| Publikationsstatus | Veröffentlicht - 2014 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | CEUR Workshop Proceedings |
|---|---|
| Band | 1257 |
| ISSN | 1613-0073 |
Konferenz
| Titel | 3rd International Workshop "What can FCA do for Artificial Intelligence?" |
|---|---|
| Kurztitel | FCA4AI 2014 |
| Beschreibung | Co-Located with the European Conference on Artificial Intelligence, ECAI 2014 |
| Dauer | 19 August 2014 |
| Stadt | Prague |
| Land | Tschechische Republik |
Externe IDs
| ORCID | /0000-0003-4414-4340/work/142252137 |
|---|