Towards a process for the creation of synthetic training data for AI-computer vision models utilizing engineering data
Publikation: Beitrag in Fachzeitschrift › Konferenzartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Artificial Intelligence-based Computer Vision models (AI-CV models) for object detection can support various applications over the entire lifecycle of machines and plants such as monitoring or maintenance tasks. Despite ongoing research on using engineering data to synthesize training data for AI-CV model development, there is a lack of process guidelines for the creation of such data. This paper proposes a synthetic training data creation process tailored to the particularities of an engineering context addressing challenges such as the domain gap and methods like domain randomization.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2237-2246 |
Seitenumfang | 10 |
Fachzeitschrift | Proceedings of the Design Society |
Jahrgang | 4 |
Publikationsstatus | Veröffentlicht - 16 Mai 2024 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0001-9789-2823/work/160478592 |
---|---|
ORCID | /0000-0002-8537-4591/work/160479820 |
ORCID | /0000-0003-3957-9489/work/160480088 |
Scopus | 85194060525 |
ORCID | /0009-0003-2624-971X/work/163765554 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- annotation automation, artificial intelligence (AI), domain gap, process improvement, synthetic training data, annotation automation, artificial intelligence (AI), domain gap, process improvement, synthetic training data