Towards a process for the creation of synthetic training data for AI-computer vision models utilizing engineering data

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Abstract

Artificial Intelligence-based Computer Vision models (AI-CV models) for object detection can support various applications over the entire lifecycle of machines and plants such as monitoring or maintenance tasks. Despite ongoing research on using engineering data to synthesize training data for AI-CV model development, there is a lack of process guidelines for the creation of such data. This paper proposes a synthetic training data creation process tailored to the particularities of an engineering context addressing challenges such as the domain gap and methods like domain randomization.

Details

OriginalspracheEnglisch
Seiten (von - bis)2237-2246
Seitenumfang10
FachzeitschriftProceedings of the Design Society
Jahrgang4
PublikationsstatusVeröffentlicht - 16 Mai 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-9789-2823/work/160478592
ORCID /0000-0002-8537-4591/work/160479820
ORCID /0000-0003-3957-9489/work/160480088
Scopus 85194060525
ORCID /0009-0003-2624-971X/work/163765554

Schlagworte

Schlagwörter

  • annotation automation, artificial intelligence (AI), domain gap, process improvement, synthetic training data, annotation automation, artificial intelligence (AI), domain gap, process improvement, synthetic training data