Topology across scales on heterogeneous cell data

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Maria Torras-Pérez - , University of Oxford (Autor:in)
  • Iris H.R. Yoon - , Swarthmore College (Autor:in)
  • Praveen Weeratunga - , University of Colombo, University of Oxford (Autor:in)
  • Ling Pei Ho - , University of Oxford (Autor:in)
  • Helen M. Byrne - , University of Oxford (Autor:in)
  • Ulrike Tillmann - , University of Oxford, University of Cambridge (Autor:in)
  • Heather A. Harrington - , University of Oxford, Max Planck Institute of Molecular Cell Biology and Genetics, Zentrum für Systembiologie Dresden (CSBD), Technische Universität Dresden, Exzellenzcluster PoL: Physik des Lebens (Autor:in)

Abstract

Multiplexed imaging allows multiple cell types to be simultaneously visualised in a single tissue sample, generating unprecedented amounts of spatially-resolved, biological data. In topological data analysis, persistent homology provides multiscale descriptors of "shape" suitable for the analysis of such spatial data. Here we propose a novel visualisation of persistent homology (PH) and fine-tune vectorisations thereof (exploring the effect of different weightings for persistence images, a prominent vectorisation of PH). These approaches offer new biological interpretations and promising avenues for improving the analysis of complex spatial biological data especially in multiple cell type data. To illustrate our methods, we apply them to a lung data set from fatal cases of COVID-19 and a data set from lupus murine spleen.

Details

OriginalspracheEnglisch
Aufsatznummere1013460
FachzeitschriftPLOS computational biology
Jahrgang21
Ausgabenummer10
PublikationsstatusVeröffentlicht - 1 Okt. 2025
Peer-Review-StatusJa

Externe IDs

PubMed 41091735