Topological semimetals with intrinsic chirality as spin-controlling electrocatalysts for the oxygen evolution reaction

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Xia Wang - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Qun Yang - , Weizmann Institute of Science, University of California at Los Angeles (Autor:in)
  • Sukriti Singh - , Technische Universitat Wien (Autor:in)
  • Horst Borrmann - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Vicky Hasse - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Changjiang Yi - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Yongkang Li - , Weizmann Institute of Science (Autor:in)
  • Marcus Schmidt - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Xiaodong Li - , Center for Advancing Electronics Dresden (cfaed), Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Gerhard H. Fecher - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Dong Zhou - , Tsinghua University (Autor:in)
  • Binghai Yan - , Weizmann Institute of Science (Autor:in)
  • Claudia Felser - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)

Abstract

Electrocatalytic water splitting is a promising approach for clean hydrogen production, but the process is hindered by the sluggish kinetics of the anodic oxygen evolution reaction (OER) owing to the spin-dependent electron transfer process. Efforts to control spin through chirality and magnetization have shown potential in enhancing OER performance. Here we harnessed the potential of topological chiral semimetals (RhSi, RhSn and RhBiS) and their spin-polarized Fermi surfaces to promote the spin-dependent electron transfer in the OER, addressing the traditional volcano-plot limitations. We show that OER activities follow the trend RhSi < RhSn < RhBiS, corresponding to the increasing extent of spin–orbit coupling (SOC). The chiral single crystals outperform achiral counterparts (RhTe2, RhTe and RuO2) in alkaline electrolyte, with RhBiS exhibiting a specific activity two orders of magnitude higher than RuO2. Our work reveals the pivotal roles of chirality and SOC in spin-dependent catalysis, facilitating the design of ultra-efficient chiral catalysts.

Details

OriginalspracheEnglisch
Aufsatznummereaad4998
Seiten (von - bis)101-109
Seitenumfang9
FachzeitschriftNature energy
Jahrgang10
Ausgabenummer1
PublikationsstatusVeröffentlicht - Jan. 2025
Peer-Review-StatusJa