Topological mirror insulators in one dimension
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We demonstrate the existence of topological insulators in one dimension (1D) protected by mirror and time-reversal symmetries. They are characterized by a nontrivial Z2 topological invariant defined in terms of the "partial" polarizations, which we show to be quantized in the presence of a 1D mirror point. The topological invariant determines the generic presence or absence of integer boundary charges at the mirror-symmetric boundaries of the system. We check our findings against spin-orbit coupled Aubry-André-Harper models that can be realized, e.g., in cold-atomic Fermi gases loaded in one-dimensional optical lattices or in density- and Rashba spin-orbit-modulated semiconductor nanowires. In this setup, in-gap end-mode Kramers doublets appearing in the topologically nontrivial state effectively constitute a double-quantum dot with spin-orbit coupling.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 165164 |
Fachzeitschrift | Physical Review B |
Jahrgang | 94 |
Ausgabenummer | 16 |
Publikationsstatus | Veröffentlicht - 25 Okt. 2016 |
Peer-Review-Status | Ja |