Topological matchings and amenability
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We establish a characterization of amenability for general Hausdor topological groups in terms of matchings with respect to finite uniform coverings. Furthermore, we prove that it suffices to just consider two-element uniform coverings. We also show that extremely amenable as well as compactly approximable topological groups satisfy a perfect matching property condition-the latter even with regard to arbitrary (i.e., possibly infinite) uniform coverings. Finally, we prove that the automorphism group of a Fraisse limit of a metric Fraisse class is amenable if and only if the class has a certain Ramsey-type matching property.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 167-200 |
Seitenumfang | 34 |
Fachzeitschrift | Fundamenta Mathematicae |
Jahrgang | 238 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 2017 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0002-7245-2861/work/173049655 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Continuous logic, Invariant means, Matchings in bipartite graphs, Ramsey theory, Topological groups