Topological Hall effect arising from the mesoscopic and microscopic non-coplanar magnetic structure in MnBi

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Yangkun He - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Sebastian Schneider - , Dresden Center for Nanoanalysis (DCN), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Toni Helm - , Max-Planck-Institut für Chemische Physik fester Stoffe, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Jacob Gayles - , Max-Planck-Institut für Chemische Physik fester Stoffe, University of South Florida (Autor:in)
  • Daniel Wolf - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Ivan Soldatov - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Ural Federal University (Autor:in)
  • Horst Borrmann - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Walter Schnelle - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Rudolf Schaefer - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Dresden (Autor:in)
  • Gerhard H. Fecher - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Bernd Rellinghaus - , Dresden Center for Nanoanalysis (DCN) (Autor:in)
  • Claudia Felser - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)

Abstract

The topological Hall effect (THE), induced by the Berry curvature that originates from non-zero scalar spin chirality, is an important feature for mesoscopic topological structures, such as skyrmions. However, the THE might also arise from other microscopic non-coplanar spin structures in the lattice. Thus, the origin of the THE inevitably needs to be determined to fully understand skyrmions and find new host materials. Here, we examine the Hall effect in both, bulk- and micron-sized lamellar samples of MnBi. The sample size affects the temperature and field range in which the THE is detectable. Although a bulk sample exhibits the THE only upon exposure to weak fields in the easy-cone state, in micron-sized lamella the THE exists across a wide temperature range and occurs at fields near saturation. Our results show that both the non-coplanar spin structure in the lattice and topologically non-trivial skyrmion bubbles are responsible for the THE, and that the dominant mechanism depends on the sample size. Hence, the magnetic phase diagram for MnBi is size-dependent. Our study provides an example in which the THE is simultaneously induced by two mechanisms, and builds a bridge between mesoscopic and microscopic magnetic structures.

Details

OriginalspracheEnglisch
Aufsatznummer117619
Seitenumfang9
FachzeitschriftActa materialia
Jahrgang226
PublikationsstatusVeröffentlicht - März 2022
Peer-Review-StatusJa

Externe IDs

WOS 000804680600008

Schlagworte

Schlagwörter

  • MnBi, Noncoplanar spin structure, Skyrmion bubble, Topological hall effect

Bibliotheksschlagworte