Topological Edge States with Zero Hall Conductivity in a Dimerized Hofstadter Model
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
The Hofstadter model is a simple yet powerful Hamiltonian to study quantum Hall physics in a lattice system, manifesting its essential topological states. Lattice dimerization in the Hofstadter model opens an energy gap at half filling. Here we show that even if the ensuing insulator has a Chern number equal to zero, concomitantly a doublet of edge states appear that are pinned at specific momenta. We demonstrate that these states are topologically protected by inversion symmetry in specific one-dimensional cuts in momentum space, define and calculate the corresponding invariants, and identify a platform for the experimental detection of these novel topological states.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 216805 |
Fachzeitschrift | Physical review letters |
Jahrgang | 115 |
Ausgabenummer | 21 |
Publikationsstatus | Veröffentlicht - 20 Nov. 2015 |
Peer-Review-Status | Ja |