Topochemical conversion of an imine- into a thiazole-linked covalent organic framework enabling real structure analysis

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Frederik Haase - , Max-Planck-Institut für Festkörperforschung, Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Erik Troschke - , Professur für Anorganische Chemie (I) (AC1) (Autor:in)
  • Gökcen Savasci - , Max-Planck-Institut für Festkörperforschung, Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Tanmay Banerjee - , Max-Planck-Institut für Festkörperforschung (Autor:in)
  • Viola Duppel - , Max-Planck-Institut für Festkörperforschung (Autor:in)
  • Susanne Dörfler - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Martin M.J. Grundei - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Asbjörn M. Burow - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Christian Ochsenfeld - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Stefan Kaskel - , Professur für Anorganische Chemie (I) (AC1), Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Bettina V. Lotsch - , Max-Planck-Institut für Festkörperforschung, Ludwig-Maximilians-Universität München (LMU) (Autor:in)

Abstract

Stabilization of covalent organic frameworks (COFs) by post-synthetic locking strategies is a powerful tool to push the limits of COF utilization, which are imposed by the reversible COF linkage. Here we introduce a sulfur-assisted chemical conversion of a two-dimensional imine-linked COF into a thiazole-linked COF, with full retention of crystallinity and porosity. This post-synthetic modification entails significantly enhanced chemical and electron beam stability, enabling investigation of the real framework structure at a high level of detail. An in-depth study by electron diffraction and transmission electron microscopy reveals a myriad of previously unknown or unverified structural features such as grain boundaries and edge dislocations, which are likely generic to the in-plane structure of 2D COFs. The visualization of such real structural features is key to understand, design and control structure-property relationships in COFs, which can have major implications for adsorption, catalytic, and transport properties of such crystalline porous polymers.

Details

OriginalspracheEnglisch
Aufsatznummer2600
FachzeitschriftNature communications
Jahrgang9
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Dez. 2018
Peer-Review-StatusJa

Externe IDs

PubMed 29968723