Tool wear monitoring in milling processes using a sensory tool holder

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Alexander Schuster - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Andreas Otto - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Hendrik Rentzsch - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Steffen Ihlenfeldt - , Professur für Werkzeugmaschinenentwicklung und adaptive Steuerungen, Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)

Abstract

In-process monitoring in milling, specifically tool condition monitoring (TCM), is an important technology for improving productivity and workpiece quality. However, industrial implementation of in-process TCMs remains a difficult task, since progressing tool wear is indicated by small changes of various physical parameters. Therefore, a sensitive monitoring system is needed to provide a reliable base of information while having minimal impact on the machine tool system and processes. Recent advancements in deep learning (DL) techniques are frequently applied on monitoring data for tool wear prediction as they can process and analyse raw data without prior feature engineering. This paper presents a suitable monitoring approach based on a recently developed sensory tool holder, which measures cutting forces and vibrations in direct proximity to the process zone. The system is equipped with wireless data transmission and a novel energy harvesting technology for energy supply. Two milling experiments with focus on increasing tool wear were conducted and the collected data processed. A DL based model, comprising three convolutional neural network (CNN) layers, one long short-term memory (LSTM) layer, and a multi-layer perceptron (MLP), was trained on the raw sensor signals to make predictions on the tool wear state. The model was evaluated using previously unseen test data and achieved a high prediction accuracy of at least 97,3% for all sensor signals, with the highest accuracy of 99,9% achieved when using bending moment signals.

Details

OriginalspracheEnglisch
TitelEuropean Society for Precision Engineering and Nanotechnology, Conference Proceedings - 23rd International Conference and Exhibition, EUSPEN 2023
Redakteure/-innenO. Riemer, C. Nisbet, D. Phillips
Herausgeber (Verlag)euspen
Seiten237-240
Seitenumfang4
ISBN (elektronisch)9781998999132
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheEuropean Society for Precision Engineering and Nanotechnology (EUSPEN)

Konferenz

Titel23rd International Conference of the European Society for Precision Engineering and Nanotechnology
KurztitelEUSPEN 2023
Veranstaltungsnummer23
Dauer12 - 16 Juni 2023
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtTechnical University of Denmark
StadtCopenhagen
LandDänemark