Tissue Outcome Prediction in Patients with Proximal Vessel Occlusion and Mechanical Thrombectomy Using Logistic Models

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Florian Welle - , Universität Leipzig (Autor:in)
  • Kristin Stoll - , Universität Leipzig (Autor:in)
  • Christina Gillmann - , Universität Leipzig (Autor:in)
  • Jeanette Henkelmann - , Universität Leipzig (Autor:in)
  • Gordian Prasse - , Universität Leipzig (Autor:in)
  • Daniel P.O. Kaiser - , Institut und Poliklinik für Diagnostische und Interventionelle Neuroradiologie, Technische Universität Dresden (Autor:in)
  • Elias Kellner - , Albert-Ludwigs-Universität Freiburg (Autor:in)
  • Marco Reisert - , Albert-Ludwigs-Universität Freiburg (Autor:in)
  • Hans R. Schneider - , Universität Leipzig (Autor:in)
  • Julian Klingbeil - , Universität Leipzig (Autor:in)
  • Anika Stockert - , Universität Leipzig (Autor:in)
  • Donald Lobsien - , Universität Leipzig, Fresenius AG (Autor:in)
  • Karl Titus Hoffmann - , Universität Leipzig (Autor:in)
  • Dorothee Saur - , Universität Leipzig (Autor:in)
  • Max Wawrzyniak - , Universität Leipzig (Autor:in)

Abstract

Perfusion CT is established to aid selection of patients with proximal intracranial vessel occlusion for thrombectomy in the extended time window. Selection is mostly based on simple thresholding of perfusion parameter maps, which, however, does not exploit the full information hidden in the high-dimensional perfusion data. We implemented a multiparametric mass-univariate logistic model to predict tissue outcome based on data from 405 stroke patients with acute proximal vessel occlusion in the anterior circulation who underwent mechanical thrombectomy. Input parameters were acute multimodal CT imaging (perfusion, angiography, and non-contrast) as well as basic demographic and clinical parameters. The model was trained with the knowledge of recanalization status and final infarct localization. We found that perfusion parameter maps (CBF, CBV, and Tmax) were sufficient for tissue outcome prediction. Compared with single-parameter thresholding-based models, our logistic model had comparable volumetric accuracy, but was superior with respect to topographical accuracy (AUC of receiver operating characteristic). We also found higher spatial accuracy (Dice index) in an independent internal but not external cross-validation. Our results highlight the value of perfusion data compared with non-contrast CT, CT angiography and clinical information for tissue outcome-prediction. Multiparametric logistic prediction has high potential to outperform the single-parameter thresholding-based approach. In the future, the combination of tissue and functional outcome prediction might provide an individual biomarker for the benefit from mechanical thrombectomy in acute stroke care.

Details

OriginalspracheEnglisch
Seiten (von - bis)739-749
Seitenumfang11
FachzeitschriftTranslational stroke research
Jahrgang15
Ausgabenummer4
PublikationsstatusVeröffentlicht - 30 Mai 2023
Peer-Review-StatusJa

Externe IDs

PubMed 37249761
Mendeley 797ef3b6-966a-3b59-b167-173add1b20e1
ORCID /0000-0001-5258-0025/work/150330305

Schlagworte

Schlagwörter

  • Computed tomography, Perfusion, Prediction, Stroke, Tissue outcome

Bibliotheksschlagworte