Tissue classification for laparoscopic image understanding based on multispectral texture analysis

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Yan Zhang - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Sebastian J. Wirkert - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Justin Iszatt - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Hannes Kenngott - , Universität Heidelberg (Autor:in)
  • Martin Wagner - , Universitätsklinikum Heidelberg (Autor:in)
  • Benjamin Mayer - , Universität Heidelberg (Autor:in)
  • Christian Stock - , Universität Heidelberg (Autor:in)
  • Neil T. Clancy - , Imperial College London (Autor:in)
  • Daniel S. Elson - , Imperial College London (Autor:in)
  • Lena Maier-Hein - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)

Abstract

Intraoperative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study through statistical analysis, we show that (1) multispectral imaging data are superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) combining the tissue texture with the reflectance spectrum improves the classification performance. The classifier reaches an accuracy of 98.4% on our dataset. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.

Details

OriginalspracheEnglisch
Aufsatznummer015001
FachzeitschriftJournal of Medical Imaging
Jahrgang4
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Jan. 2017
Peer-Review-StatusJa
Extern publiziertJa

Schlagworte

Schlagwörter

  • multispectral laparoscopy, multispectral texture analysis, tissue classification