Tissue classification for laparoscopic image understanding based on multispectral texture analysis

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Yan Zhang - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Sebastian J. Wirkert - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Justin Iszatt - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Hannes Kenngott - , Universität Heidelberg (Autor:in)
  • Martin Wagner - , Universitätsklinikum Heidelberg (Autor:in)
  • Benjamin Mayer - , Universität Heidelberg (Autor:in)
  • Christian Stock - , Universität Heidelberg (Autor:in)
  • Neil T. Clancy - , Imperial College London (Autor:in)
  • Daniel S. Elson - , Imperial College London (Autor:in)
  • Lena Maier-Hein - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)

Abstract

Intra-operative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study we show (1) that multispectral imaging data is superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) that combining the tissue texture with the reflectance spectrum improves the classification performance. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.

Details

OriginalspracheEnglisch
TitelMedical Imaging 2016
Redakteure/-innenRobert J. Webster, Ziv R. Yaniv
Herausgeber (Verlag)SPIE - The international society for optics and photonics, Bellingham
ISBN (elektronisch)9781510600218
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Band9786
ISSN1605-7422

Konferenz

TitelMedical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling
Dauer28 Februar - 1 März 2016
StadtSan Diego
LandUSA/Vereinigte Staaten

Schlagworte

Schlagwörter

  • multispectral laparoscopy, multispectral texture analysis, tissue classification