Time Stepping Adaptation for Subdiffusion Problems with Non-smooth Right-Hand Sides
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We consider a time-fractional subdiffusion equation with a Caputo derivative in time, a general second-order elliptic spatial operator, and a right-hand side that is non-smooth in time. The presence of the latter may lead to locking problems in our time stepping procedure recently introduced in [J. Comp. Appl. Math., 427(115122), 2023] and [Appl. Math. Lett., 123: Paper No. 107515, 8, 2022]. Hence, a generalized version of the residual barrier is proposed here to rectify the issue. We also consider related alternatives to this generalized algorithm, and, furthermore, show that this new residual barrier may be useful in the case of a negative reaction coefficient.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1 |
| Seiten | 305-312 |
| Seitenumfang | 8 |
| Band | 1 |
| ISBN (elektronisch) | 978-3-031-86173-4 |
| Publikationsstatus | Veröffentlicht - 2025 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Lecture notes in computational science and engineering : LNCSE |
|---|---|
| Band | 153 |
| ISSN | 1439-7358 |
Konferenz
| Titel | European Conference on Numerical Mathematics and Advanced Applications 2023 |
|---|---|
| Kurztitel | ENUMATH 2023 |
| Dauer | 4 - 8 September 2023 |
| Webseite | |
| Bekanntheitsgrad | Internationale Veranstaltung |
| Ort | Instituto Superior Técnico Congress Center |
| Stadt | Lissabon |
| Land | Portugal |
Externe IDs
| ORCID | /0000-0002-2458-1597/work/184441747 |
|---|