Time Stepping Adaptation for Subdiffusion Problems with Non-smooth Right-Hand Sides

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

We consider a time-fractional subdiffusion equation with a Caputo derivative in time, a general second-order elliptic spatial operator, and a right-hand side that is non-smooth in time. The presence of the latter may lead to locking problems in our time stepping procedure recently introduced in [J. Comp. Appl. Math., 427(115122), 2023]  and [Appl. Math. Lett., 123: Paper No. 107515, 8, 2022]. Hence, a generalized version of the residual barrier is proposed here to rectify the issue. We also consider related alternatives to this generalized algorithm, and, furthermore, show that this new residual barrier may be useful in the case of a negative reaction coefficient.

Details

OriginalspracheEnglisch
TitelNumerical Mathematics and Advanced Applications ENUMATH 2023, Volume 1
Seiten305-312
Seitenumfang8
Band1
ISBN (elektronisch)978-3-031-86173-4
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

Reihe Lecture notes in computational science and engineering : LNCSE
Band153
ISSN1439-7358

Konferenz

TitelEuropean Conference on Numerical Mathematics and Advanced Applications 2023
KurztitelENUMATH 2023
Dauer4 - 8 September 2023
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtInstituto Superior Técnico Congress Center
StadtLissabon
LandPortugal

Externe IDs

ORCID /0000-0002-2458-1597/work/184441747