Three-dimensional facial-image analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Xian Xia - , Max-Planck-Gesellschaft, Peking University, University of Chinese Academy of Sciences (Autor:in)
  • Xingwei Chen - , Max-Planck-Gesellschaft, Peking University, University of Chinese Academy of Sciences (Autor:in)
  • Gang Wu - , Max-Planck-Gesellschaft (Autor:in)
  • Fang Li - , Max-Planck-Gesellschaft (Autor:in)
  • Yiyang Wang - , Max-Planck-Gesellschaft, Peking University, University of Chinese Academy of Sciences (Autor:in)
  • Yang Chen - , Max-Planck-Gesellschaft, Peking University, University of Chinese Academy of Sciences (Autor:in)
  • Mingxu Chen - , Max-Planck-Gesellschaft, Peking University, University of Chinese Academy of Sciences (Autor:in)
  • Xinyu Wang - , Max-Planck-Gesellschaft, Peking University, ShanghaiTech University (Autor:in)
  • Weiyang Chen - , Max-Planck-Gesellschaft (Autor:in)
  • Bo Xian - , Max-Planck-Gesellschaft (Autor:in)
  • Weizhong Chen - , Max-Planck-Gesellschaft (Autor:in)
  • Yaqiang Cao - , Max-Planck-Gesellschaft (Autor:in)
  • Chi Xu - , Max-Planck-Gesellschaft (Autor:in)
  • Wenxuan Gong - , Max-Planck-Gesellschaft, Peking University, University of Chinese Academy of Sciences (Autor:in)
  • Guoyu Chen - , Max-Planck-Gesellschaft, Peking University, University of Chinese Academy of Sciences (Autor:in)
  • Donghong Cai - , Max-Planck-Gesellschaft, Peking University, University of Chinese Academy of Sciences (Autor:in)
  • Wenxin Wei - , Second Military Medical University (Autor:in)
  • Yizhen Yan - , Max-Planck-Gesellschaft, Peking University, University of Chinese Academy of Sciences (Autor:in)
  • Kangping Liu - , Peking University (Autor:in)
  • Nan Qiao - , Accenture (Autor:in)
  • Xiaohui Zhao - , Accenture (Autor:in)
  • Jin Jia - , Accenture (Autor:in)
  • Wei Wang - , Edith Cowan University (Autor:in)
  • Brian K. Kennedy - , National University of Singapore, MOH Holdings Pte Ltd., Agency for Science, Technology and Research, Singapore, Buck Institute for Age Research (Autor:in)
  • Kang Zhang - , Macau University of Science and Technology (Autor:in)
  • Carlo V. Cannistraci - , Biomedizin Kybernetik (FoG), Exzellenzcluster PoL: Physik des Lebens, Biotechnologisches Zentrum (BIOTEC), Tsinghua University (Autor:in)
  • Yong Zhou - , Shanghai Jiao Tong University (Autor:in)
  • Jing Dong J. Han - , Max-Planck-Gesellschaft, Peking University (Autor:in)

Abstract

Not all individuals age at the same rate. Methods such as the ‘methylation clock’ are invasive, rely on expensive assays of tissue samples and infer the ageing rate by training on chronological age, which is used as a reference for prediction errors. Here, we develop models based on convoluted neural networks through training on non-invasive three-dimensional (3D) facial images of approximately 5,000 Han Chinese individuals that achieve an average difference between chronological or perceived age and predicted age of ±2.8 and 2.9 yr, respectively. We further profile blood transcriptomes from 280 individuals and infer the molecular regulators mediating the impact of lifestyle on the facial-ageing rate through a causal-inference model. These relationships have been deposited and visualized in the Human Blood Gene Expression—3D Facial Image (HuB-Fi) database. Overall, we find that humans age at different rates both in the blood and in the face, but do so coherently and with heterogeneity peaking at middle age. Our study provides an example of how artificial intelligence can be leveraged to determine the perceived age of humans as a marker of biological age, while no longer relying on prediction errors of chronological age, and to estimate the heterogeneity of ageing rates within a population.

Details

OriginalspracheEnglisch
Seiten (von - bis)946-957
Seitenumfang12
FachzeitschriftNature metabolism
Jahrgang2
Ausgabenummer9
PublikationsstatusVeröffentlicht - 1 Sept. 2020
Peer-Review-StatusJa

Externe IDs

PubMed 32895578