Three results related to the half-plane property of matroids

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We settle three problems from the literature on stable and real zero polynomials and their connection to matroid theory. We disprove the weak real zero amalgamation conjecture by Schweighofer and the second author. We disprove a conjecture by Brändén and D’León by finding a relaxation of a matroid with the weak half-plane property that does not have the weak half-plane property itself. Finally, we prove that every quaternionic unimodular matroid has the half-plane property which was conjectured by Pendavingh and van Zwam.

Details

OriginalspracheEnglisch
Seiten (von - bis)1-15
Seitenumfang15
FachzeitschriftAlgebraic Combinatorics
Jahrgang8
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Externe IDs

Scopus 86000138419

Schlagworte

Schlagwörter

  • half-plane property, hyperbolic polynomials, matroids, real zero polynomials