Thermoelectric Properties of Novel Semimetals: A Case Study of YbMnSb2

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Yu Pan - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Feng Ren Fan - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Xiaochen Hong - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Bin He - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Congcong Le - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Walter Schnelle - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Yangkun He - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Kazuki Imasato - , Northwestern University (Autor:in)
  • Horst Borrmann - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Christian Hess - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Bernd Büchner - , Professur für Experimentelle Festkörperphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Yan Sun - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Chenguang Fu - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • G. Jeffrey Snyder - , Northwestern University (Autor:in)
  • Claudia Felser - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)

Abstract

The emerging class of topological materials provides a platform to engineer exotic electronic structures for a variety of applications. As complex band structures and Fermi surfaces can directly benefit thermoelectric performance it is important to identify the role of featured topological bands in thermoelectrics particularly when there are coexisting classic regular bands. In this work, the contribution of Dirac bands to thermoelectric performance and their ability to concurrently achieve large thermopower and low resistivity in novel semimetals is investigated. By examining the YbMnSb2 nodal line semimetal as an example, the Dirac bands appear to provide a low resistivity along the direction in which they are highly dispersive. Moreover, because of the regular-band-provided density of states, a large Seebeck coefficient over 160 µV K−1 at 300 K is achieved in both directions, which is very high for a semimetal with high carrier concentration. The combined highly dispersive Dirac and regular bands lead to ten times increase in power factor, reaching a value of 2.1 mW m−1 K−2 at 300 K. The present work highlights the potential of such novel semimetals for unusual electronic transport properties and guides strategies towards high thermoelectric performance.

Details

OriginalspracheEnglisch
Aufsatznummer2003168
FachzeitschriftAdvanced materials
Jahrgang33
Ausgabenummer7
PublikationsstatusVeröffentlicht - 18 Feb. 2021
Peer-Review-StatusJa

Externe IDs

PubMed 33296128

Schlagworte

Schlagwörter

  • 2D Fermi surfaces, anisotropy, Dirac bands, Zintl compounds