Theory of wetting dynamics with surface binding

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Xueping Zhao - , University of Nottingham Ningbo China (Autor:in)
  • Susanne Liese - , Universität Augsburg (Autor:in)
  • Alf Honigmann - , Exzellenzcluster PoL: Physik des Lebens, Professur für Biophysik, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Frank Jülicher - , Technische Universität Dresden, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD), Exzellenzcluster PoL: Physik des Lebens (Autor:in)
  • Christoph A. Weber - , Universität Augsburg (Autor:in)

Abstract

Biomolecules, such as proteins and nucleic acids, can phase separate in the cytoplasm of cells to form biomolecular condensates. Such condensates are often liquid-like droplets that can wet biological surfaces such as membranes. Many molecules that participate in phase separation can also reversibly bind to membrane surfaces. When a droplet wets a surface, molecules can diffuse inside and outside of the droplet or in the bound state on the surface. How the interplay between surface binding, diffusion in surface and bulk affects the wetting kinetics is not well understood. Here, we derive the governing equations using non-equilibrium thermodynamics by relating the thermodynamic fluxes and forces at the surface coupled to the bulk. We study the spreading dynamics in the presence of surface binding and find that binding speeds up wetting by nucleating a droplet inside the surface. Our results suggest that the wetting dynamics of droplets can be regulated by two-dimensional surface droplets in the surface-bound layer through changing the binding affinity to the surfaces. These findings are relevant both to engineering life-like systems with condensates and vesicles, and biomolecular condensates in living cells.

Details

OriginalspracheEnglisch
Aufsatznummer103025
FachzeitschriftNew journal of physics
Jahrgang26
Ausgabenummer10
PublikationsstatusVeröffentlicht - 1 Okt. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0475-3790/work/171554069

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • biomolecular condensates, liquid-liquid phase separation, non-equilibrium thermodynamics, surface binding, wetting