The structure of the maximal congruence lattices of algebras on a finite set

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Danica JakubíKová-Studenovská - , P. J. Safarik University (Autor:in)
  • Reinhard PöSchel - , Institut für Algebra (Autor:in)
  • SáNdor Radeleczki - , University of Miskolc (Autor:in)

Abstract

The congruence lattices of algebras with a fixed finite base set A form a lattice ϵA (with respect to inclusion). The coatoms of EA are congruence lattices of monounary algebras (A, f), i.e., they are of the form Con(A, f) for a unary function f : A → A. It is known from [8] that there are three different types I, II, III of such coatoms which can be described explicitly by the corresponding type of f. In the present paper we are going to characterize these congruence lattices in detail. We prove that each coatom is a particular union of some nontrivial intervals of the partition lattice Eq(A). Moreover, for each monounary algebra (A, f) of type I, II, III the join- and meetirreducible elements, the atoms and the coatoms of its congruence lattice Con(A, f ) are determined, and the covering relation in this lattice is characterized.

Details

OriginalspracheEnglisch
Seiten (von - bis)299-320
Seitenumfang22
FachzeitschriftJournal of multiple-valued logic and soft computing
Jahrgang36
Ausgabenummer4
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa

Schlagworte