The reducts of the homogeneous binary branching C-relation
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Let (L;C) be the (up to isomorphism unique) countable homogeneous structure carrying a binary branching C-relation. We study the reducts of (L;C), i.e., the structures with domain L that are first-order definable in (L;C).We show that up to existential interdefinability, there are finitely many such reducts. This implies that there are finitely many reducts up to first-order interdefinability, thus confirming a conjecture of Simon Thomas for the special case of (L; C). We also study the endomorphism monoids of such reducts and show that they fall into four categories.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1255-1297 |
Seitenumfang | 43 |
Fachzeitschrift | Journal of Symbolic Logic |
Jahrgang | 81 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 1 Dez. 2016 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0001-8228-3611/work/142241098 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- C-relation, Endomorphism monoids, First-order reducts, Homogeneous structures, Model-completeness, Omega-categoricity, Tree-like structures