The Precise Complexity of Reasoning in ALC with ω-Admissible Concrete Domains

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Concrete domains have been introduced in the context of Description Logics to allow references to qualitative and quantitative values. In particular, the class of ω-admissible concrete domains, which includes Allen’s interval algebra, the region connection calculus (RCC8), and the rational numbers with ordering and equality, has been shown to yield extensions of ALC for which concept satisfiability w.r.t. a general TBox is decidable. In this paper, we present an algorithm based on type elimination and use it to show that deciding the consistency of an ALC(D) ontology is ExpTime-complete if the concrete domain D is ω-admissible and its constraint satisfaction problem is decidable in exponential time. While this allows us to reason with concept and role assertions, we also investigate feature assertions f(a, c) that can specify a constant c as the value of a feature f for an individual a. We show that, under conditions satisfied by all known ω-admissible domains, we can add feature assertions without affecting the complexity.

Details

OriginalspracheEnglisch
TitelProceedings of the 37th International Workshop on Description Logics (DL 2024)
Redakteure/-innenLaura Giordano, Jean Christoph Jung, Ana Ozaki
Herausgeber (Verlag)CEUR-WS.org
Seitenumfang10
Band3739
PublikationsstatusVeröffentlicht - Juni 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheCEUR Workshop Proceedings
Band3739
ISSN1613-0073

Workshop

Titel37th International Workshop on Description Logics
KurztitelDL 2024
Veranstaltungsnummer37
Dauer18 - 21 Juni 2024
Webseite
OrtStudentsenteret
StadtBergen
LandNorwegen

Externe IDs

ORCID /0000-0002-8623-6465/work/165454384

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Complexity, Concrete Domains, Description Logics, Reasoning, Type Elimination