The Parallel Full Approximation Scheme in Space and Time for a Parabolic Finite Element Problem
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
The parallel full approximation scheme in space and time (PFASST) is a parallel-in-time integrator that allows to integrate multiple time-steps simultaneously. It has been shown to extend scaling limits of spatial parallelization strategies when coupled with finite differences, spectral discretizations, or particle methods. In this paper we show how to use PFASST together with a finite element discretization in space. While seemingly straightforward, the appearance of the mass matrix and the need to restrict iterates as well as residuals in space makes this task slightly more intricate. We derive the PFASST algorithm with mass matrices and appropriate prolongation and restriction operators and show numerically that PFASST can, after some initial iterations, gain two orders of accuracy per iteration.
Details
Originalsprache | Englisch |
---|---|
Titel | Domain Decomposition Methods in Science and Engineering XXVI |
Redakteure/-innen | Susanne C. Brenner, Axel Klawonn, Jinchao Xu, Eric Chung, Jun Zou, Felix Kwok |
Herausgeber (Verlag) | Springer, Berlin [u. a.] |
Seiten | 531-538 |
Seitenumfang | 8 |
Publikationsstatus | Veröffentlicht - 16 März 2023 |
Peer-Review-Status | Ja |
Externe IDs
ArXiv | 2103.09584 |
---|---|
Mendeley | fe7bec4f-4230-3bf8-8d02-3378454feaaf |
Scopus | 85151143865 |
ORCID | /0000-0003-1093-6374/work/142250580 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- parallel in time, PFASST, finite elements, parabolic equation