The multimodality cell segmentation challenge: toward universal solutions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jun Ma - , Vector Institute (Autor:in)
  • Ronald Xie - , University of Toronto (Autor:in)
  • Shamini Ayyadhury - , Princess Margaret Cancer Centre (Autor:in)
  • Cheng Ge - , Ocean University of China (Autor:in)
  • Anubha Gupta - , Indraprastha Institute of Information Technology Delhi (Autor:in)
  • Ritu Gupta - , All India Institute of Medical Sciences, New Delhi (Autor:in)
  • Song Gu - , Nanjing Anke Medical Technology Co. (Autor:in)
  • Yao Zhang - , Shanghai Artificial Intelligence Laboratory (Autor:in)
  • Gihun Lee - , Korea Advanced Institute of Science & Technology (KAIST) (Autor:in)
  • Joonkee Kim - , Korea Advanced Institute of Science & Technology (KAIST) (Autor:in)
  • Wei Lou - , The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen (Autor:in)
  • Haofeng Li - , Shenzhen Research Institute of Big Data (Autor:in)
  • Eric Upschulte - , Forschungszentrum Jülich (Autor:in)
  • Timo Dickscheid - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • José Guilherme de Almeida - , Champalimaud Foundation (Autor:in)
  • Yixin Wang - , Stanford University (Autor:in)
  • Lin Han - , New York University (Autor:in)
  • Xin Yang - , Shenzhen University (Autor:in)
  • Marco Labagnara - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Vojislav Gligorovski - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Maxime Scheder - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Sahand Jamal Rahi - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Carly Kempster - , University of Reading (Autor:in)
  • Alice Pollitt - , University of Reading (Autor:in)
  • Leon Espinosa - , Institut de Microbiologie de la Méditerranée (Autor:in)
  • Tâm Mignot - , Institut de Microbiologie de la Méditerranée (Autor:in)
  • Jan Moritz Middeke - , Medizinische Klinik und Poliklinik I, Else Kröner Fresenius Zentrum für Digitale Gesundheit, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Jan-Niklas Eckardt - , Medizinische Klinik und Poliklinik I, Else Kröner Fresenius Zentrum für Digitale Gesundheit, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Wangkai Li - , University of Science and Technology of China (USTC) (Autor:in)
  • Zhaoyang Li - , University of Science and Technology of China (USTC) (Autor:in)
  • Xiaochen Cai - , Nanjing University (Autor:in)
  • Bizhe Bai - , University of Queensland (Autor:in)
  • Noah F Greenwald - , Stanford Medicine (Autor:in)
  • David Van Valen - , Howard Hughes Medical Institute (Autor:in)
  • Erin Weisbart - , Broad Institute of Harvard University and MIT (Autor:in)
  • Beth A Cimini - , Broad Institute of Harvard University and MIT (Autor:in)
  • Trevor Cheung - , University of Waterloo (Autor:in)
  • Oscar Brück - , Universitätsklinikum Helsinki (Autor:in)
  • Gary D Bader - , Canadian Institute for Advanced Research (CIFAR) (Autor:in)
  • Bo Wang - , University Health Network (UHN) (Autor:in)

Abstract

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.

Details

OriginalspracheEnglisch
Seiten (von - bis)1103-1113
Seitenumfang20
FachzeitschriftNature methods
Jahrgang21
Ausgabenummer6
PublikationsstatusVeröffentlicht - Juni 2024
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC11210294
Scopus 85189012796

Schlagworte

Schlagwörter

  • Single-Cell Analysis/methods, Algorithms, Image Processing, Computer-Assisted/methods, Humans, Deep Learning, Microscopy/methods, Animals