The Minimal Ramification Problem for Rational Function Fields over Finite Fields
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study the minimal number of ramified primes in Galois extensions of rational function fields over finite fields with prescribed finite Galois group. In particular, we obtain a general conjecture in analogy with the well studied case of number fields, which we establish for abelian, symmetric, and alternating groups in many cases.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 18199-18253 |
Seitenumfang | 55 |
Fachzeitschrift | International mathematics research notices |
Jahrgang | 2023 |
Ausgabenummer | 21 |
Publikationsstatus | Veröffentlicht - Nov. 2023 |
Peer-Review-Status | Ja |
Externe IDs
Mendeley | addbd8af-5744-36e6-8427-9775115c8592 |
---|---|
Scopus | 85178060311 |
Schlagworte
Schlagwörter
- Primitive permutation-groups, Alternating group coverings, Affine line, Irreducible values, Polynomials, Extensions, Conjecture, Primes, Number